Incoder: A generative model for code infilling and synthesis D Fried, A Aghajanyan, J Lin, S Wang, E Wallace, F Shi, R Zhong, W Yih, ... arXiv preprint arXiv:2204.05999, 2022 | 573 | 2022 |
Videoclip: Contrastive pre-training for zero-shot video-text understanding H Xu, G Ghosh, PY Huang, D Okhonko, A Aghajanyan, F Metze, ... arXiv preprint arXiv:2109.14084, 2021 | 539 | 2021 |
Intrinsic dimensionality explains the effectiveness of language model fine-tuning A Aghajanyan, L Zettlemoyer, S Gupta arXiv preprint arXiv:2012.13255, 2020 | 513 | 2020 |
Muppet: Massive multi-task representations with pre-finetuning A Aghajanyan, A Gupta, A Shrivastava, X Chen, L Zettlemoyer, S Gupta arXiv preprint arXiv:2101.11038, 2021 | 285 | 2021 |
Better fine-tuning by reducing representational collapse A Aghajanyan, A Shrivastava, A Gupta, N Goyal, L Zettlemoyer, S Gupta arXiv preprint arXiv:2008.03156, 2020 | 249 | 2020 |
Memorization without overfitting: Analyzing the training dynamics of large language models K Tirumala, A Markosyan, L Zettlemoyer, A Aghajanyan Advances in Neural Information Processing Systems 35, 38274-38290, 2022 | 226 | 2022 |
Pre-training via paraphrasing M Lewis, M Ghazvininejad, G Ghosh, A Aghajanyan, S Wang, ... Advances in Neural Information Processing Systems 33, 18470-18481, 2020 | 164 | 2020 |
Cm3: A causal masked multimodal model of the internet A Aghajanyan, B Huang, C Ross, V Karpukhin, H Xu, N Goyal, D Okhonko, ... arXiv preprint arXiv:2201.07520, 2022 | 161 | 2022 |
Improving passage retrieval with zero-shot question generation DS Sachan, M Lewis, M Joshi, A Aghajanyan, W Yih, J Pineau, ... arXiv preprint arXiv:2204.07496, 2022 | 129 | 2022 |
Scaling autoregressive multi-modal models: Pretraining and instruction tuning L Yu, B Shi, R Pasunuru, B Muller, O Golovneva, T Wang, A Babu, B Tang, ... arXiv preprint arXiv:2309.02591 2 (3), 2023 | 115 | 2023 |
Retrieval-augmented multimodal language modeling M Yasunaga, A Aghajanyan, W Shi, R James, J Leskovec, P Liang, ... arXiv preprint arXiv:2211.12561, 2022 | 113 | 2022 |
Chameleon: Mixed-modal early-fusion foundation models C Team arXiv preprint arXiv:2405.09818, 2024 | 82 | 2024 |
HTLM: Hyper-text pre-training and prompting of language models A Armen, O Dmytro, L Mike, J Mandar, H Xu, G Gargi International Conference on Learning Representations, 2022 | 80* | 2022 |
D4: Improving llm pretraining via document de-duplication and diversification K Tirumala, D Simig, A Aghajanyan, A Morcos Advances in Neural Information Processing Systems 36, 53983-53995, 2023 | 74 | 2023 |
Scaling laws for generative mixed-modal language models A Aghajanyan, L Yu, A Conneau, WN Hsu, K Hambardzumyan, S Zhang, ... International Conference on Machine Learning, 265-279, 2023 | 71 | 2023 |
Megabyte: Predicting million-byte sequences with multiscale transformers L Yu, D Simig, C Flaherty, A Aghajanyan, L Zettlemoyer, M Lewis Advances in Neural Information Processing Systems 36, 78808-78823, 2023 | 69 | 2023 |
Conversational semantic parsing A Aghajanyan, J Maillard, A Shrivastava, K Diedrick, M Haeger, H Li, ... arXiv preprint arXiv:2009.13655, 2020 | 53 | 2020 |
On-device convolutional neural network models for assistant systems A Aly, A Babu, A Aghajanyan US Patent 11,314,941, 2022 | 38 | 2022 |
Semantic representations using structural ontology for assistant systems A Aghajanyan, S Gupta, B Moran, TF Levin, CANSH Nakatsu, D Difranco, ... US Patent 11,688,022, 2023 | 36 | 2023 |
Non-autoregressive semantic parsing for compositional task-oriented dialog A Babu, A Shrivastava, A Aghajanyan, A Aly, A Fan, M Ghazvininejad arXiv preprint arXiv:2104.04923, 2021 | 28 | 2021 |